Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Molecules ; 28(1)2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2166751

ABSTRACT

Propolis remains an interesting source of natural chemical compounds that show, among others, antibacterial, antifungal, antiviral, antioxidative and anti-inflammatory activities. Due to the growing incidence of respiratory tract infections caused by various pathogenic viruses, complementary methods of prevention and therapy supporting pharmacotherapy are constantly being sought out. The properties of propolis may be important in the prevention and treatment of respiratory tract diseases caused by viruses such as severe acute respiratory syndrome coronavirus 2, influenza viruses, the parainfluenza virus and rhinoviruses. One of the main challenges in recent years has been severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing COVID-19. Recently, an increasing number of studies are focusing on the activity of various propolis preparations against SARS-CoV-2 as an adjuvant treatment for this infection. Propolis has shown a few key mechanisms of anti-SARS-CoV-2 action such as: the inhibition of the interaction of the S1 spike protein and ACE-2 protein; decreasing the replication of viruses by diminishing the synthesis of RNA transcripts in cells; decreasing the particles of coronaviruses. The anti-viral effect is observed not only with extracts but also with the single biologically active compounds found in propolis (e.g., apigenin, caffeic acid, chrysin, kaempferol, quercetin). Moreover, propolis is effective in the treatment of hyperglycemia, which increases the risk of SARS-CoV-2 infections. The aim of the literature review was to summarize recent studies from the PubMed database evaluating the antiviral activity of propolis extracts in terms of prevention and the therapy of respiratory tract diseases (in vitro, in vivo, clinical trials). Based upon this review, it was found that in recent years studies have focused mainly on the assessment of the effectiveness of propolis and its chemical components against COVID-19. Propolis exerts wide-spectrum antimicrobial activities; thus, propolis extracts can be an effective option in the prevention and treatment of co-infections associated with diseases of the respiratory tract.


Subject(s)
COVID-19 , Propolis , Respiratory Tract Infections , Virus Diseases , Viruses , Humans , COVID-19/prevention & control , SARS-CoV-2/metabolism , Propolis/pharmacology , Virus Diseases/drug therapy , Antiviral Agents/chemistry , Viruses/metabolism , Respiratory Tract Infections/drug therapy
2.
Vaccines (Basel) ; 10(9)2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2010366

ABSTRACT

Despite the intense research work since the beginning of the pandemic, the pathogenesis of COVID-19 is not yet clearly understood. The previous mechanism of COVID-19, based on ACE2 tropism and explained through a single receptor, is insufficient to explain the pathogenesis due to the absence of angiotensin-converting enzyme 2 (ACE2) receptors in most of the affected organs. In the current study, we used the PatchDock server to run a molecular docking study of both the gonadotropin-releasing hormone receptor (GnRHR) and G-protein-coupled-receptor (GPCR) with the SARS-CoV-2 spike protein. Molecular Dynamics (MD) simulations were run to analyze the stability of the complexes using the GROMACS package. The docking results showed a high affinity between the spike protein with the GnRHR (-1424.9 kcal/mol) and GPCR (-1451.8 kcal/mol). The results of the MD simulations revealed the significant stability of the spike protein with the GnRHR and GPCR up to 100 ns. The SARS-CoV-2 spike protein had strong binding interactions with the GPCRs and GnRHRs, which are highly expressed in the brain, endocrine organs, and olfactory neurons. This study paves the way towards understanding the complex mechanism of neuroendocrine involvement and peripheral organ involvement, may explain the changing symptoms in patients due to new variants, and may lead to the discovery of new drug targets for COVID-19. In vitro studies involving genetic engineering or gene knockdown of the GPCRs and GnRHRs are needed to further investigate the role of these receptors in COVID-19 pathogenesis.

3.
Int J Biol Macromol ; 191: 1114-1125, 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1442393

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2), also known as peptidyl-dipeptidase A, belongs to the dipeptidyl carboxydipeptidases family has emerged as a potential antiviral drug target against SARS-CoV-2. Most of the ACE2 inhibitors discovered till now are chemical synthesis; suffer from many limitations related to stability and adverse side effects. However, natural, and selective ACE2 inhibitors that possess strong stability and low side effects can be replaced instead of those chemicals' inhibitors. To envisage structurally diverse natural entities as an ACE2 inhibitor with better efficacy, a 3D structure-based-pharmacophore model (SBPM) has been developed and validated by 20 known selective inhibitors with their correspondence 1166 decoy compounds. The validated SBPM has excellent goodness of hit score and good predictive ability, which has been appointed as a query model for further screening of 11,295 natural compounds. The resultant 23 hits compounds with pharmacophore fit score 75.31 to 78.81 were optimized using in-silico ADMET and molecular docking analysis. Four potential natural inhibitory molecules namely D-DOPA (Amb17613565), L-Saccharopine (Amb6600091), D-Phenylalanine (Amb3940754), and L-Mimosine (Amb21855906) have been selected based on their binding affinity (-7.5, -7.1, -7.1, and -7.0 kcal/mol), respectively. Moreover, 250 ns molecular dynamics (MD) simulations confirmed the structural stability of the ligands within the protein. Additionally, MM/GBSA approach also used to support the stability of molecules to the binding site of the protein that also confirm the stability of the selected four natural compounds. The virtual screening strategy used in this study demonstrated four natural compounds that can be utilized for designing a future class of potential natural ACE2 inhibitor that will block the spike (S) protein dependent entry of SARS-CoV-2 into the host cell.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , Biological Products/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Binding Sites , Biological Products/pharmacokinetics , Biological Products/toxicity , Computer Simulation , Drug Evaluation, Preclinical/methods , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
4.
Medycyna Środowiskowa = Environmental Medicine ; 14(2):33-38, 2020.
Article in English | ProQuest Central | ID: covidwho-1436518

ABSTRACT

Introduction: Emerging viral diseases are a serious public health problem, especially with such a dynamically changing epidemic situation, in which we are observers and participants. Coronaviruses are present in our lives almost constantly. Currently, the world is struggling with a pandemic caused by the new SARS CoV-2 coronavirus, which is the etiological factor of COVID-19 disease. Objective: The aim of the study is to review scientific reports and systematize current knowledge about SARS-CoV-2 coronavirus and the COVID-19 disease it causes in the face of the ongoing pandemic. State of knowledge: The course of SARS-CoV-2 infection is similar to cases caused by coronaviruses of the severe acute respiratory syndrome (SARS-CoV) and the Middle East respiratory syndrome (MERS-CoV). Symptoms vary from mild to viral pneumonia, including fever, difficulty breathing, bilateral infiltrative pneumonia, and multi-organ failure in the most severe cases. COVID-19 disease also leads to complications, such as pulmonary fibrosis, neurological disorders, an increased risk of heart attack, thrombosis, and liver dysfunction. The review presents information about the taxonomy, structure, pathomechanism, clinical symptoms, complications, number of cases, diagnostics, and treatment of COVID-19 disease caused by the SARS-CoV-2 virus. Conclusions: The SARS-CoV-2 virus has spread quickly around the world, causing a rapidly increasing number of infections and deaths among patients. There is currently no effective vaccine or targeted treatment. The only way to prevent the spread of the virus remains quarantine, the isolation of sick people, and the use of a sanitary regime.

5.
Theranostics ; 11(4): 1690-1702, 2021.
Article in English | MEDLINE | ID: covidwho-1013521

ABSTRACT

The global outbreak of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a requirement for two pronged clinical interventions such as development of effective vaccines and acute therapeutic options for medium-to-severe stages of "coronavirus disease 2019" (COVID-19). Effective vaccines, if successfully developed, have been emphasized to become the most effective strategy in the global fight against the COVID-19 pandemic. Basic research advances in biotechnology and genetic engineering have already provided excellent progress and groundbreaking new discoveries in the field of the coronavirus biology and its epidemiology. In particular, for the vaccine development the advances in characterization of a capsid structure and identification of its antigens that can become targets for new vaccines. The development of the experimental vaccines requires a plethora of molecular techniques as well as strict compliance with safety procedures. The research and clinical data integrity, cross-validation of the results, and appropriated studies from the perspective of efficacy and potently side effects have recently become a hotly discussed topic. In this review, we present an update on latest advances and progress in an ongoing race to develop 52 different vaccines against SARS-CoV-2. Our analysis is focused on registered clinical trials (current as of November 04, 2020) that fulfill the international safety and efficacy criteria in the vaccine development. The requirements as well as benefits and risks of diverse types of SARS-CoV-2 vaccines are discussed including those containing whole-virus and live-attenuated vaccines, subunit vaccines, mRNA vaccines, DNA vaccines, live vector vaccines, and also plant-based vaccine formulation containing coronavirus-like particle (VLP). The challenges associated with the vaccine development as well as its distribution, safety and long-term effectiveness have also been highlighted and discussed.


Subject(s)
COVID-19 Vaccines , COVID-19/epidemiology , Drug Development/trends , Pandemics/prevention & control , SARS-CoV-2/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Clinical Trials as Topic/statistics & numerical data , Drug Approval , Drug Development/statistics & numerical data , Humans , Patient Safety , SARS-CoV-2/genetics , Time Factors , Treatment Outcome , Viral Structural Proteins/genetics , Viral Structural Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL